WO2023031355 - HEALTH STATE ESTIMATION USING MACHINE LEARNING

National phase entry:
Publication Number WO/2023/031355
Publication Date 09.03.2023
International Application No. PCT/EP2022/074380
International Filing Date 01.09.2022
Title [English] HEALTH STATE ESTIMATION USING MACHINE LEARNING [French] ESTIMATION D'ÉTAT DE SANTÉ UTILISANT L'APPRENTISSAGE AUTOMATIQUE
Applicants ** ROCKLEY PHOTONICS LIMITED 1 Ashley Road 3rd Floor Altrincham Cheshire WA14 2DT, GB
Inventors ** WIERZYNSKI, Casimir c/o Rockley Photonics, Inc. 234 East Colorado Boulevard Suite 600 Pasadena, California 91101, US GRADY, Daniel Carl c/o Rockley Photonics, Inc. 234 Colorado Boulevard Suite 600 Pasadena, California 91101, US PARK, Sangshik c/o Rockley Photonics, Inc. 234 Colorado Boulevard Suite 600 Pasadena, California 91101, US
Priority Data 63/239,857  01.09.2021  US 17/823,505  30.08.2022  US
front page image
Application details
International Searching Authority
Translation

Recalculate

* The data is based on automatic recognition. Please verify and amend if necessary.

** IP-Coster compiles data from publicly available sources. If this data includes your personal information, you can contact us to request its removal.

Quotation for National Phase entry

Country Stages Total
China Filing 1712
EPO Filing, Examination 11899
Japan Filing 557
South Korea Filing 611
USA Filing, Examination 6035
MasterCard Visa
Total: 20814
The term for entry into the National Phase has expired. This quotation is for informational purposes only.

Abstract [English] A system and method for health state estimation. In some embodiments, the method includes receiving a first measurement of a subject, the first measurement being a first tissue spectrum of the subject; and generating, using a machine learning inference process based on the first measurement, an estimate of an aspect of the health state of the subject. [French] L'invention concerne un système et un procédé d'estimation d'état de santé. Dans certains modes de réalisation, le procédé comprend la réception d'une première mesure d'un sujet, la première mesure étant un premier spectre tissulaire du sujet ; et la génération, à l'aide d'un processus d'inférence par apprentissage automatique sur la base de la première mesure, d'une estimation d'un aspect de l'état de santé du sujet.